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Abstract We discuss three topologically different methods for calculating the
surface tension between a flat solid and a liquid from theoretical and computer sim-
ulation viewpoints. The first method, commonly used in experiments, measures the
contact angle at which a static droplet of liquid rests on a solid surface. We present a
new analysis algorithm for this method and explore the effects of line tension on the
contact angle. The second method, commonly used computer simulations, uses the
pressure tensor through the virial in a system where a thick, infinitely extended slab
of liquid rests on a solid surface. The third method, which is original to this paper and
is closest to the thermodynamic definition of surface tension, applies to a spherical
solid in contact with liquid in which the flat solid is recovered by extrapolating the
sphere radius to infinity. We find that the second and third methods agree with each
other, while the first method systematically underestimates surface tension values.
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1 Introduction

The surface tension, y, between a liquid and a solid is a fundamental ingredient in the
behavior and control of a wide range of systems. For example, nanoparticles can be
directed to self-assemble into thin films at an oil/water interface by manipulating the
solid/water and solid/oil surface tensions [1]. Since these assemblies stabilize water-
in-oil or oil-in-water droplets, they hold great promise for encapsulation and tunable
delivery strategies [2].

Although the solid/liquid surface tensions are thought to be the most fundamen-
tal ingredient in controlling these systems, it is not possible to directly measure
water/nanoparticle and oil/nanoparticle surface tensions by experiment. This is dis-
cussed by Binks and Clint [3], who estimate the surface tensions on theoretical grounds.
However, such estimates are approximate due to the many assumptions used. In con-
trast, computer simulations offer the possibility of accurately computing such surface
tensions. This article uses three methods to compute the solid/liquid surface tension
for flat solids. The focus is on implementation in molecular dynamics (MD) com-
puter simulations. The third method also allows the calculation of the surface tension
between a solid spherical nanoparticle and a liquid, which makes a direct link to the
motivating example given above. In what follows we present the three methods and
discuss the relationships between them. Along these same lines, we would like to bring
to the reader’s attention the elegant paper by Salomons [4].

2 Method 1: contact angle

The contact angle of a static droplet of liquid on a flat solid surface represents a state of
mechanical equilibrium, and as such is determined by a balance between three interfa-
cial tensions: the liquid/vapor surface tension, y1y, the solid/vapor surface tension, yqy,
and the solid/liquid interfacial tension, yg (see Fig. 1). Each pair of phases meets on a
two-manifold called an interface, and all three phases meet on a one-manifold called
the three-phase line. For each point on the three-phase line there are three vectors,
one for each interface, that act perpendicularly to the three-phase line and tangentially
to their corresponding interface. The equilibrium relation between these vectors is
known as Young’s equation, where 6 is the Young contact angle.'

Vv €08 0 = Y51 — Vsv. (1)

However, Young’s equation is only valid for macroscopic droplets. For microscopic
droplets, the contact angle is influenced by the three-phase solid/liquid/vapor contact
line, which contributes an additional energy per unit length called the line tension
[5]. The modified Young’s equation accounts for the effect of line tension, where R is
the radius of the base of the droplet (in contact with the solid).

1 Note that some authors define the Young contact angle as (7 — ), which changes the Young equation in
a trivial manner.
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Fig. 1 Mechanical equilibrium,
expressed through the three
two-phase interfacial tension
values, determines the contact
angle 6 at which a static liquid
droplet rests on a flat solid
surface. By definition, the
surface is classified as
hydrophobic if the contact angle
for a droplet of water is acute (as
shown). An obtuse angle
corresponds to a hydrophilic
surface

T
YivCOSO = Y1 — Yev + S (2)

By considering the contact angle as a function of the droplet base radius, & = 6(R)
and using two different radii R, R’, we obtain

T T
¥sl — Yy cos O(R) + & = Yov = ¥l = nveos O(R') + T (3)

or

as R — oo, (4)

1 1
cosO(R) = cosO(R') + (- 2) = €08 Ooo +
v \ R R’

Vv

where 0 is the limit of #(R") as R’ — oo, provided this limit exists. We can thus

Wl‘ite
cos ( )_f(la)_cos e v (1?)7 ( )

where the function f(1/R) is a straight line with slope /)1, and intercept cos f.

From three equilibrium MD simulations of a droplet composed of different num-
bers of atoms, Ny, N2, N3, it is possible to find cos 0, by measuring the radii and
angles R;, 6;, plotting the points (1/R;, cos6;) fori = 1, 2, 3 and extrapolating to an
infinite radius with a straight line.

To determine the contact angle 6(R), two steps are required. The liquid/vapor
boundary must be identified and the contact angle must be measured from this bound-
ary. Two different approaches are taken in the literature once the boundary has been
identified. Werder [6] employs a circular best fit to estimate the contact angle. In con-
trast, Giovambattista [ 7] makes no geometrical assumptions about the drop profile, and
fits the boundary data with the function f(z) = Az% 4 Bz + C where z is the distance
of a water molecule from the surface. Our simulation data suggests that no geometrical
assumption about the boundary points should be made, other than they be convex. Our
approach makes use of a particular class of spline functions, described below.

For the liquid, we use the recent coarse grain water model of Shinoda [8].
The potential energy between water sites is given by uy(r) = 3+/3¢/2[(o/r)"?
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—(0/r)*], where r is the distance between the sites, and where € = 0.895 kcal/mol,
o = 0.437nm. We choose N1 = 11,000, N, = 22, 000, and N3 = 44, 000 for the
number of water sites in a liquid droplet. The potential energy between an infinitely
extended flat solid and a liquid particle is given by [9] U (d) = aeo?d~® —bes®d 3,
with a = 0.0338, b = 0.118, and 0 = 0.4nm. The value of € determines whether,
and to what extent, the solid object is hydrophobic or hydrophilic. d is the distance
between the liquid particle and the solid. The droplet base radius R; and contact angle
0; = O0(R;) are measured from a room temperature MD simulation as follows: after
the droplet has equilibrated from an initial hemispherical geometry where the solid
occupies the region z < 0 (1ns), the spatial coordinates of all the liquid atoms are
saved every 40 ps. To determine R;, we choose a small € > 0 and project the liquid
particles in the region 0 < z < € onto the plane z = 0 for each set of coordinates,
giving a diffuse circle. We then identify the boundary of this circle, which is the three-
phase contact line, by applying the following algorithm: every point on the boundary
has the special property that there is a line passing through it which divides the plane
z = 0 into two regions: a region containing all the other points, and an empty region.
We note that this boundary algorithm is valid for convex sets only, and that in practice
one must allow a few points in the “empty” region due to thermal fluctuations.

For a circle of radius R centered at the origin, the distance to a point (x;, y;)
on the circular boundary identified above is |(x12. + yjz.)l/ 2 _ R|. In order to find
the radius which best fits these points, we need to minimize the function f(R) =
Z;V:] ((sz + yjz.)l/ 2 — R)? where N is the number of points on the boundary. The
minimum is R = Z?’:] (x/z. + yjz.)l/ 2 /N which is simply the average of the distances
of the boundary points from the center. Figure 2 gives an idea of the procedure. A
final average is taken over the sets of coordinates sampled at different times from the
equilibrium simulation to give R;.

To determine the contact angle 8(R;) we average over thin slices of the drop-
let normal to the solid/liquid interface and passing through the center of the droplet
(identified as the center of the three-phase circular boundary), as well as over sets of

10.0 - 1
g ok + slice points : »i% i
= ¢ boundary points ' .
| — circular fit ;
-10.0 = -
| 1 ” | o L |
-20.0 -10.0 0 10.0 20.0
X (nm)

Fig. 2 A parallel slice, closest to the surface, of a liquid droplet resting on a flat solid surface is shown for
a hydrophilic surface with ¢ = 270. The solid/liquid/vapor three-phase boundary points are identified and
fit to a circle to measure the three-phase radius
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droplet coordinates spaced 40 ps apart from each other in time. The coordinates of the
liquid particles in each slice are projected onto the plane normal to the solid/liquid
interface and passing through the droplet center. An analogous algorithm is used to
identify the boundary of the projected slice, which is the liquid/vapor interface. A
smooth curve is drawn through the boundary points using a cubic spline function
based on the algorithm proposed by Reinsch [10].

The spline function is two times differentiable, built piecewise over intervals
[x;, xi41] from cubic polynomials. Since we do not use parametric splines, we divide
the droplet into two halves using a dividing line normal to the solid/liquid interface,
rotate the droplet by v /2, apply the spline separately to the two halves, and then rotate
back by —7 /2. We do not attempt to fit the spline to the droplet coordinates farthest
from the solid surface. Figure 3 gives an idea of this procedure. The spline minimizes
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Fig.3 Shown are perpendicular slices of a liquid droplet resting on a flat solid surface. Panel A corresponds
to a hydrophobic surface (6 < 7/2) with e = 110, while panel B corresponds to a neutral surface (0 ~ 7 /2)
with € = 230. The liquid/vapor boundary points are identified and fit to a spline function as explained in
the text. The contact angle is then calculated from the spline polynomial closest to the solid surface
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/ "¢ (02 dx ©)

0

among all functions g (x) such that

n N v\ 2
> (M) <S8, ge C[xp,xyl. M
i=0 Syl

where dy; and S are parameters that control the smoothness of the curve. We take
S = N — (2N)/? where N is the number of points that the spline is approximat-
ing (the number of boundary points in the left or right hand side of one slice). This is
consistent with the value range recommended by Reinsch [10], namely N —(2N)'/? <
S <N+ (2N)V2

The parameter dy is fixed for each boundary spline, but varies over slice angles and
time. Specifically, 8y is initially taken as 0.25 nm for each point in the set of bound-
ary points. The Resnich algorithm is then applied to obtain the spline function and
the integral of Eq. 6 is evaluated. If its value is greater than 0.15, 8y is incremented
by 0.01 nm and the spline is recalculated. This process is repeated until the integral
is less than 0.15. When this condition is satisfied, we consider the spline curve to
be sufficiently smooth and devoid of oscillations. The differentiability of the spline
curve allows us to compute the contact angle 6; = 6(R;) at the point where the three
interfaces meet. The data, along with the extrapolation to infinite radius, is shown in
Fig. 4.

The line tension is plotted against the solid/liquid interaction strength in Fig. 5. Its
magnitude (~ 1079 J/m) is consistent with what is known about line tension [11]. The
data suggests that the line tension increases with the interaction strength; this trend
agrees with the data reported by Werder [6] on similar systems. In all cases we observe

M
 e=130 e
0.4 M

=170 * |
o2k &=l -

cos 0

‘ . ! .
0 0.05 0.1 0.15 0.2
/R (nm™")

Fig. 4 Calculation of the macroscopic contact angle for a droplet of liquid on a flat solid surface. The
microscopic contact angle is plotted against the inverse radius of the three-phase contact line for droplets

consisting of 11, 000, 22, 000, and 44, 000 particles. Linear extrapolation to infinite radius yields the mac-
roscopic contact angle, with the slope being the line tension divided by the liquid/vapor surface tension
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Fig. 5 The three-phase solid/liquid/vapor line tension is plotted as a function of €, along with the best
linear fit to the data

a positive line tension, which means that at small radius, the droplet base contracts,
increasing the contact angle compared to the macroscopic limit.

Finally, we are ready to compute the solid/liquid surface tension from cos 6, using
Eq. 1. Two additional quantities are required, namely the liquid/vapor and solid/vapor
surface tensions. We use y}y as reported by Shinoda [8]. To estimate 5, we perform
the following calculation: the vapor particles are identified by using the liquid/vapor
boundary curve from above. The solid/vapor tension is then calculated using the pres-
sure tensor methods discussed below with area 4 = L L, — JTRI-Z (where the quantity
subtracted is the space occupied by the droplet). We find that ys, = 0 for all cases, sim-
ply because there are very few vapor particles near the surface, in spite of suggestions
to the contrary [12]. The solid/liquid surface tension data is plotted in Fig. 6.

. . ’ . .
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Fig. 6 The surface tension of a flat solid/liquid interface, as a function of ¢, is plotted for the three methods
under consideration: method 1, the contact angle route; method 2, the pressure tensor route, and method 3,
the solvation free energy route. A solid surface is classified as hydrophobic if ¥ > 0 and as hydrophilic if
y <0
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3 Method 2: pressure tensor

Continuing with the known routes to calculate the surface tension, we turn our attention
to a flat interface as depicted in Fig. 7. The liquid/liquid and solid/liquid interactions
are as described above, and we take the solid/vapor interaction to be purely repulsive.

An expression for the surface tension can be derived by using the virial [13,14].
The pressure tensor (or stress tensor) can be defined from the virial as [13—15]

Pap = % (Z Piapiv/mi + Zriafib)» ®)

where ab is a component of the pressure tensor, 7 is the particle index, p is the momen-
tum of particle i, m its mass, r its position, and f is the force. The pressure tensor is thus

Py ny Py,
P=| Py Py, Py |. &)
sz sz 44

In our system, the off-diagonal components average to zero and the diagonal com-
ponents have normal (P, = P;;) and tangential P;(z) = %(P” + Py,) contributions
relative to the interfaces (Fig. 7).

The surface tension can be defined by the well-known expression [16]

14 =/ dz[P, — Pi(2)]. (10)

The tangential pressure is different from the normal pressure only in the vicinity of the
interfaces. There is a contribution from each interface. Our simulations are performed

Fig. 7 The simulation unit cell
is shown for the pressure tensor :
route to calculate surface va por
tension. The unit cell is :
replicated in all theee | e 'Y .........................
dimensions to set up periodic { lv
boundary conditions li qu id LZ
Ysi
solid
Tsv
vapor
L Ly
X
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in an orthorhombic box as depicted in Fig. 7 with sides Ly, Ly, L, where the area of
the interface is A = L, L. The total surface tension can be rewritten as

y =L(P, — Py, (1)

where P, is the average tangential pressure P;(z). Note that the box size dependence
of Eq. 11is 1/Asince V = L, LyL,.

We can divide the total surface tension into contributions from the individual surface
tensions as [17]

Y = Vsl + Vv + Vev- (12)

This is possible because the interfaces are separated from each other and do not inter-
act—i.e., there is a bulk phase region between each interface. From previous work,
we have yy, = 71 mN/m [8]. Also, y5y =~ 0, because the surface is constructed to be
purely repulsive on the vapor side.

Thus we can determine y4 as

Vsl = (Py — P) — niv. (13)

The resulting solid/liquid surface tension data is plotted in Fig. 6.

4 Method 3: solvation free energy

In this section we introduce a new method to calculate solid/liquid surface tension,
based on the thermodynamic definition of surface tension, y, given by [18]

y = (E) ; (14
Ay p.1

where G is the Gibbs free energy and A is the interfacial area.

Motivated by this definition, we will compute the solvation free energy of a spher-
ical solid of radius R and recover the flat result by taking the limit as R — oo. In
order to do this, we must adapt the flat potential Uy (d) = aec®d~® — bea®d—> to a
curved solid geometry. This is straightforward, and is done as follows [19].

Suppose that an individual atomic crystal lattice site in the solid interacts with a
particle in the liquid via a distance-dependent potential energy u(r). Approximating
the solid as a continuum with number density p = N/ V that occupies the semi-infinite
region z < 0, a liquid particle at height z > 0 interacts with the entire solid object as

00 2 T
U(z) =/ dr/ de/ d¢ r*sine pu(r)
z 0 m—cos~L(z/r)

=2mp /OO ru(r)[r — zldr. (15)
Z
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Two derivatives yield

U//
u) = (S). (16)
27 pé
Using expressions (16) and Uy (d) = aec’d =% — beo®d 3, we obtain
2laec”® 6bea®
ug(r) = =257 =9 229 -6 (17)
0 0

as the potential energy between a particle in the liquid and a particle in the solid. Now,
we once again approximate the solid as a continuum with number density p = N/V,
but this time as a sphere of radius R. A liquid particle interacts with the entire solid
sphere as

R 2 T
U, R) = / dr/ d@/ depr? sinpu([r>+(d + R)> — 2rcos ¢ (d + R)]'/?)
0 0 0

4aec’R3 35d* + 140Rd> + 252R?d? + 224R3d + 80R*
T sl (d+ R)(d + 2R)
8bea®R3
C d3(d + 2R

(18)

where d is the distance between the liquid particle and the solid.

We now change variables from U (d, R) to U(r, R) where r = d + R, the distance
between the centers of mass of the solid sphere and the liquid particle. Let us now con-
sider the significance of the two partial derivatives U /dr and 0U /9 R. First, —oU /or
(the gradient of the potential) gives the force that acts between the two particles on
their respective centers of mass. This is the force used to move the particles during a
molecular dynamics simulation. Second, >, —dU/d R, summed over all liquid par-
ticles i, represents the force acting on the sphere radius. However, the sphere radius
is fixed and hence does not experience this force. Conceptually, to balance this force
so that the sphere radius experiences a net force of zero, we should apply an external
force to the sphere radius of >°; dU /3R at each step of the simulation. However, we
do not actually apply this external force since the sphere radius is in no danger of
changing. Nonetheless, we may calculate the required external restoring force on the
sphere radius, known as the force of constraint, and record its value during a computer
simulation. Its average value over an equilibrium simulation is called the mean force
of constraint; let us denote it by PMF(R). By performing separation simulations with
spheres of different radii, we can integrate PMF(R) starting from R = 0 to obtain
the solvation free energy G(R). G(R) can be thought of as the free energy cost of
“growing” the sphere into water. It can also be thought of as the free energy cost of
transferring a spherical solid of radius R from an ideal gas reference state to a liquid.
We have verified the validity of the PMF route to G(R) by performing free energy
calculations corresponding to the later interpretation, where a radius R sphere is pulled
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from the vapor phase, through the liquid/vapor interface, and into the liquid phase in
a simulation system of an infinitely extended, thick, slab of liquid.
From the definition of surface tension in Eq. 14, we have

GR)

= 19
Rme 47 R? (19

This is because the short range nature of the potential energy functions means that, for
large R, G(R) becomes interface-dominated. We performed 30 equilibrium MD sim-
ulations of 10ns each for spheres of radius R = 0.1, 0.2, 0.3, ..., 3.0 nm embedded
in a large box of water. The data in the range R € [1.0 nm, 3.0 nm] is fit to the three-
parameter function G(R) /4w R? = y +aR~". The fits are shown in Fig. 8 along with
the data points; we feel the quality of the fit justifies our choice. Huang [20] used a
power series expansion in 1/R truncated at first order. The y values are shown in Fig.
6. The exponents b are monotone increasing with €, and range from 0.95 to 1.28 for
the range of € studied.

Rather than performing simulations of small radius spheres and extrapolating the
data to infinite radius, let us consider the possibility of extending the method, for-
mally, to infinite radius. In other words, let us consider performing a simulation of a
flat solid/liquid interface, and ask whether the current method gives us access to the
surface tension or not. Clearly it is not possible to calculate G (R), because this would
require us to integrate the PMF from R = 0 to co. However, we can directly calculate
the surface tension from the PMF by

_ PMFE(R)
y = lim ———— (20)

70 n
60 .
0. Ex J
SR T ;
~o-_, 10000 0.
2 e el e 5150 e
g 40k "Q"‘Oro.l_zo 0 -0--8-6-0- 00
N;/ 30; "0 0-0-0.06.4.¢ o 'O-e—o—o_-;
B [ .. — B
I 0pe,. . 83210,
% b m*‘°-~s o 0‘20"o"e"o..e_'o”o”o“_
= e~ - = -
O 0 e L g2050 o 83230 (o]
Oj T®=0-0-.0-.4 66000 »
-10 -
[ Y
1.0

sphere radius (nm)

Fig. 8 For each value of ¢, the solvation free energy G(R) of a solid sphere of radius R =
0.1, 0.2, 0.3, ..., 3.0nm is calculated from MD simulations according to method 3. The solvation free
energy per unit area is fit to the three-parameter function G(R)/4m R? = y + aR™? over the range
R € [1.0nm, 3.0nm]. The fits are shown along with the data points. The exponents b are monotone
increasing with € and lie in the range b € [0.95, 1.28]
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for the following reason: writing G(R)/47wR> = y + h(R), where h(R) — 0 as
R — o0, we have PMF(R) /87 R = y + h(R) + Rh'(R)/2 since PMF is the deriv-
ative of G(R). Equation 20 is valid if Rh'(R)/2 — 0 as R — oo, which holds since
we estimated numerically that 1 (R) = aR~? with b € (0.95, 1.28).

The limiting expressions for the potential energy and its derivatives are also well-
defined: for example it is straightforward to verify that Eq. 18 reduces to Ug(d) =
aec?d=® —bec®d 3, limr_ oo U(d, R) = Ug(d). Unfortunately, there are two prob-
lems blocking the use of the sphere method for flat interfaces. The first problem is the
scaling of PMF(R) with R, and the second problem arises from the use of periodic
boundary conditions in computer simulations. We will now discuss these problems in
detail.

Only a patch of the flat solid/liquid interface can be simulated, of area A = L x L
as shown in Fig. 9a. Periodic boundary conditions in the directions parallel to the
interface mimic an infinite solid/liquid interface, but the liquid atoms contribute to
the PMF only in the L x L patch shown. Deforming this patch onto the surface of a
sphere of radius R gives the patch shown in Fig. 9b, of area A = 2RL sin(L/2R),
which approaches L? as R — oo. Analogous to the flat case, we should only use the
liquid atoms above the curved patch to compute the PMF corresponding to this patch.
To recover the full PMF, a sum over patches must be performed. With L fixed and
R increasing, the number of patches we need grows like R2. The full PMF, however,
grows like 8 Ry for large R. We conclude that in the limit R — oo, the contribu-
tion to the PMF from a single patch goes to zero. Hence the sphere method does not
allow us to compute y for the flat geometry. Second, the sphere method, for finite R,
does not use periodic boundary conditions to replicate the patches. Rather, each patch
is explicitly simulated because the entire sphere fits inside the simulation box. For
reasons of mechanical equilibrium, this implies that the components of the pressure
tensor normal and tangential to the interface are related by a differential equation [13].
In contrast, a planar interface has independent normal and tangential pressure tensor

Fig. 9 A flat solid/liquid interface of area L2 is shown in panel A. Thought of as a patch of a sphere of
infinite radius, panel B shows the corresponding patch for a finite sphere, with surface area 2R L sin(L/2R)
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values, which is why they both appear explicitly in Eq. 11; the sphere method lacks
any explicit contributions from tangential forces.

5 Conclusions

We have presented three topologically different methods for computing the surface
tension between a liquid and a flat solid. In method 1, a hemispherical droplet of liquid
surrounded by vapor rests on a flat solid surface. The surface tension is obtained by
measuring the angle at which the liquid/vapor boundary meets the solid surface. The
line tension associated with the three-phase boundary is calculated and is shown to be
proportional to the strength of the solid/liquid interaction. In method 2, all three phases
are also present, but only meet in pairs at planar interfaces. The pressure tensor is used
to compute the surface tension. In method 3, a spherical solid is surrounded by liquid,
and the vapor phase is absent. The solvation free energy of the solid, which is used
to obtain the surface tension, is calculated by a novel method based on constrained
molecular dynamics. Although method 2 is the most efficient because no extrapolation
is required, it also gives the least amount of information. Method 1 allows the line
tension to be computed, which is crucial to understanding the behavior of nanoscale
systems with three-phase boundaries. Method 3 gives access to spherical solids, open-
ing the door to colloid science. Methods 2 and 3 are in perfect agreement, whereas
method 1 systematically underestimates the surface tension as a function of the hydro-
phobicity/hydrophilicity of the surface (see Fig. 6). We do not understand why this
discrepancy exists. We will continue to work on this problem.
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